Momentum Problems & Calculations Honors physics

Name

Impulse Problems $\Delta p = Ft$ (Remember that "change in momentum" is just another name for "impulse".)

1. An 8.0 kg bowling ball is initially rolling at 5.0 m/s when it strikes a bunch of pins and slows down to 2.0 m/s. Determine the following quantities.

Initial momentum =	Final momentum =
Change in momentum =	Impulse =

- A 75-kilogram hockey player is skating across the ice at a speed of 6.0 meters per second. What is the magnitude of the average force required to stop the player in 0.65 second?
 Initial momentum = ______ Final momentum = ______
 Change in momentum = ______ Average Force = ______
- A 0.149-kilogram baseball, initially moving at 32 meters per second, is brought to rest in 0.040 second by a baseball glove on a catcher's hand. Calculate the magnitude of the average force exerted on the ball by the glove. Initial momentum = ______ Final momentum = ______ Average Force = ______

Conservation of Momentum (use when doing any sort of recoil or collision problem)

 $p_i = p_f$ which means total momentum of system _{initial} = total momentum of system _{final}

Recoil Problems

- 4. A 50. kg student is initially at rest on ice skates while holding an 8 kg medicine ball. The student throws the medicine ball horizontally at 2 m/s. What is the recoil velocity of the student?
- 5. Two blocks are sitting initially at rest as seen in the diagram below when the spring between them is fired. If the 5 kg cart moves to the right at 0.8 m/s, what is the recoil velocity of the other cart?

6. The Mark 45 is a US Naval Artillery gun found on battleships. The 21,700 kg artillery gun is initially fired from rest, and the gun fires a 32 kg shell with a speed of 762 m/s. What is the recoil velocity of the gun?

Perfectly Inelastic collisions where objects stick together

7. A 0.50 kg blob of clay is initially traveling at 6.0 m/s when it strikes a 2.5 kg block that is at rest. If the clay sticks to the block, what is the velocity of the clay-block system after the collision?

8. A 1200-kilogram car moving at 12 meters per second collides with a 2300-kilogram car that is waiting at rest at a traffic light. After the collision, the cars lock together and start sliding together. Calculate the speed of the locked cars immediately after the collision.

Collisions where objects bounce off each other

9. A 3.0 kg block moving at 4.0 m/s has a head-on collision with a stationary block of mass 2.0 kg. After the collision, the 2.0 kg block is moving at 3.5 m/s. What is the velocity of the 3.0 kg block after the collision?

10. A 25.0 kg bumper car moving to the right at 5.0 m/s collides with a 35.0 kg bumper car moving to the left at -1.0 m/s. After the collision, the 25.0 kg bumper car is going 1.50 m/s to the right. What is the final velocity of the 35.0 kg bumper car after the collision?

Answers

- 1. Impulse = 24 kgm/s
- 2. F = 692 N
- 3. F = 119 N
- 4. 0.32 m/s
- 5. 2 m/s
- 6. 1.12 m/s
- 7. 1 m/s
- 8. 4.1 m/s
- 9. 1.67 m/s
- 10. 1.5 m/s (to right)