Newton's 2nd law and Friction Honors Physics

Name___

Honors Physics				
1. A classroom desk supported b in an effort to start it into a state a. there is a force of static friction b. there is a force of kinetic or sl c. there is a force of rolling frict d. there are small dust mites at the	by long legs is stationary of motion. The desk doe on opposing its motion liding friction opposing its ion opposing its motion he desk's feet that push b	in the room. A teacher of es not <i>budge</i> . The desk ro its motion pack on the desk to keep	comes around and pushes emains at rest because it at rest	s upon the desk
2. A classroom desk supported b in an effort to start it into a state 0.5 m/s. The desk maintains this a. there is a force of static friction b. there is a force of kinetic or sl c. there is a force of rolling frict d. the teacher must have stopped	by long legs is stationary of motion. The desk is f constant speed because on balancing the teacher's liding friction balancing ion balancing the teacher l pushing	in the room. A teacher of finally accelerated from n s forward push the teacher's forward push r's forward push	omes around and pushes rest and then moves at a sh	s upon the desk constant speed of
3. The symbol μ stands for the _ a. coefficient of friction	b. force of friction	c. normal force		
4. The units on μ area. Newton	b. kg	c. m/s/s	d nonsense! There a	are no units on μ.
5. Which of these is NOT a forc a. Friction	e (circle all that apply)? b. inertia	c. velocity	d. weight	e. air resistance

6. Draw in all missing forces and label them. (F_w, F_f, F_N) Show all equations and work to determine all missing values. Be sure to indicate direction on each force and acceleration.

	E _ 10 N E _ 2 N		
$F_1 = 15 \text{ N}$ $F_2 = 15 \text{ N}$	$\blacksquare Block \blacksquare Block \blacksquare$		
	A force E ₁ is applied to a block and there is a 2N force of		
	friction on the block. The block accelerates to the left at a		
Two forces, F_1 and F_2 , are applied to a block on a frictionless horizontal surface as shown. The mass of the	rate of 2 meters per second squared. Determine all of the values below		
block is 5.0 kg. Determine all of the values below.			
weight -	$\Sigma F_x = $		
weight	a =		
Normal force=			
$\Sigma F_x =$	m =		
	weight =		
a =	Normal force =		
Is this block necessarily at rest? Explain.			

$F_1 = 12 \text{ N}$	F ₁ = 18 N Block		
$\mu = 0.20$ One force, F ₁ is applied to a block on a horizontal surface where the coefficient of friction is 0.20 as shown. The block has a mass of 3.0 kg. Determine all of the values below. weight =	One force, F ₁ is applied to a 4.0 kg block on a horizontal surface where there is friction. The block is being dragged along at a constant velocity of 4.0 m/s. Determine all of the values below. weight = Normal force=		
Normal force=	a =		
Frictional force =	ΣF _x =		
$\Sigma F_x =$	Frictional force =		
a =	μ =		
$F_{1} = 18 \text{ N}$ Block Bloc	Block $\mu = 0.60$ A 3.0 kg block is initially sliding to the left with a velocity of 4.0 m/s on a frictionless surface when it hits a patch of asphalt where the coefficient of friction is 0.60. Determine all of the values below. weight = Normal force= $\Sigma F_x = $ $a = $		
F ₁ Block One force, F_1 = 45 N, is applied to a 6.0 kg block on a horizontal surface where there is friction. The block is being dragged along at a constant velocity of 2.0 m/s. What is the coefficient of friction?	Block F_1 One force, $F_1 = 15$ N, is applied to a 4.5 kg block on a horizontal surface where the coefficient of friction is 0.15. Determine the acceleration of the block.		