Mechanical Energy Introductory Tasks Honors Physics

Learning Target: I will be able to define and apply the following energy concepts: work, power, gravitational potential energy, elastic potential energy, and kinetic energy

Topic	Physics Textbook (HMH, purple)	The Physics Classroom (https://www.physicsclassroom.com/class/energy)		
Work (W)	Section 5.1	Lessons 1a and 1b		
Gravitational potential energy (Ug)	Section 5.2	Lesson 1c		
Elastic potential energy (U _s)	Section 5.2	Lesson 1c		
Kinetic energy (K)	Section 5.2	Lesson 1d		
Power (P)	Section 5.4	Lesson 1f		

Part 1 (*for each topic*): As you explore each topic, construct a chart similar to the one below on your own paper.

Topic: Weight	Variable (s)/symbol: Fg		nit(s) of measurement: ewton (N), pound (lb)
Definition: The force of gravity			uation(s):
pulling on the mass	s of an object.		$F_g = mg$
Sample Problem: Determine the		Solution:	
weight, in newtons	s, of a 40 kg dog.	Fy =	mg
Diagram (with known values):			
	g = 9.8 m/s ²	F9 =	(40 kg) (9.8 mg)
		Fg=	392 Kgm
↓ F _g			392 N

Part 2: Complete the following problems from the Work, Energy, Power worksheet: #1-3, 5, 6, 8, 11, 12, 13-15, 17-19