
1. A 1.8 kg pendulum is dropped from a height of 0.75 m above the bottom of its swing. What's the velocity of the pendulum at the bottom of its swing?

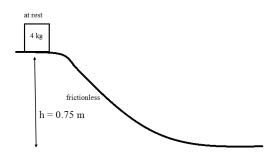
At point of release

At bottom of swing

PE = _____

PE = _____

KE = _____


KE = _____

Total= _____

Total= _____

Velocity = _____

2. A 4.0 kg block is released from rest at the top of a frictionless slope. The height of the slope is 0.75 m. What is the velocity of the block at the bottom of the slope?

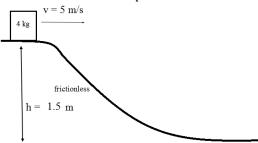
At point of release

At bottom of slope

PE = _____

PE = _____

KE =


KE = _____

Total= _____

Total= _____

Velocity = _______

3. A 4.0 kg block is initially sliding at 5 m/s at the top of a frictionless slope. The height of the slope is 1.5 m. What is the velocity of the block at the bottom of the slope?

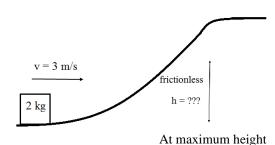
At point of release

At bottom of slope

PE = ____

PE =

KE = _____


KE = ____

Total=_____

Total= _____

Velocity = _____

4. A 2 kg block is sliding with an initial velocity of 3 m/s at the bottom of a frictionless slope. The block comes to a momentary stop at its maximum height. How high up the slope will the block slide?

At bottom of slope

PE = _____

PE = _____

KE = ___

KE = _____

Total=_____

Total=____

h = _____

5. A spring with a spring constant of 20 N/m is compressed 0.5 m. A 3 kg block is placed at rest against the compressed spring. What is the velocity of the block when the spring is released?

> k = 20 N/mcompressed 0.5 m frictionless

When	spring's	compressed
------	----------	------------


After launched off spring

PE = _____

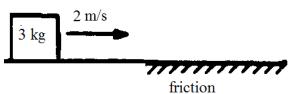
KE = _____

Total=

6. A 3.0 kg block is initially at rest. The block is pulled by a constant, horizontal force of 18 N over a displacement of 2 meters on a frictionless surface.

At end of 2 meters

Initial KE of block=


Energy added to the block = _____

Work done by the force on the block = _____

Final KE of the block=____

velocity = _____

7. A 3 kg block is initially sliding at 2 m/s on ice when it hits a patch of concrete and skids to a stop. The average force of friction while on the concrete is 8 N. How far did the block skid on the concrete?

Initially sliding

When stopped

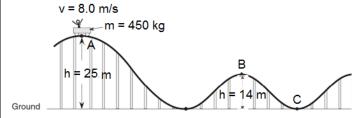
Work done by

PE =

friction

 $PE = \underline{\hspace{1cm}}$

Work = _____


KE = ____ KE = ___

F = _____

Total= _____

distance = _____

8. A roller coaster with a mass of 450 kg is at the top of a 25 m hill. The car is initially traveling at 8 m/s at the top of the hill. What is the velocity of the roller coaster at the top of the 2nd hill at a height of 14 m?

At top of 1st hill

At top of 2nd hill

PE = _____

PE = _____

KE = _____

KE = _____

Total= ____

Total= ____

v= ____