Electricity Worksheet (p.1)

All questions should be answered on your own paper.

- 1. In terms of attraction and repulsion, how do negative particles affect negative particles? How do negatives affect positives?
- 2. What happens to electrons in any charging process? What happens to protons in the same processes?
- 3. Give an example of something charged by friction.
- 4. Give an example of something charged by simple contact.
- 5. Give an example of temporarily charging an object by induction.
- 6. What is an electrostatic discharge?
- 7. How does an electrically polarized object differ from an electrically charged object?
- 8. Rub an inflated balloon against your hair and place it against a door. What does the balloon do? Explain how it does this.
- 9. How does the magnitude of electrical force between a pair of charged objects change when the objects are moved twice as far apart? Three times as far apart?
- 10. What is the electrostatic force between two metal spheres, each having 5 C of charge. The balloons are 0.30 m apart.

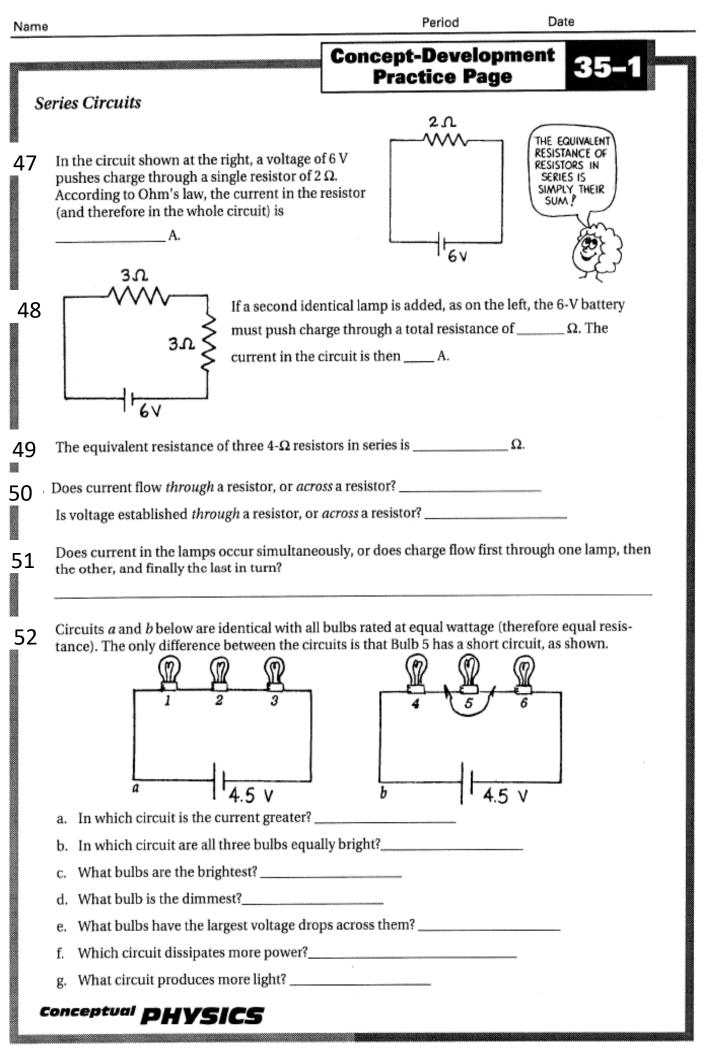
2.5 x 10¹² N

- 11. Suppose that two point charges, each with a charge of +1 Coulomb are separated by a distance of one meter. (a) Will they attract or repel? (b) Determine the magnitude of the electrical force between them. $9 \times 10^9 N$
- 12. Two balloons are charged with an identical quantity and type of charge: -0.0025 C. They are held apart at a separation distance of 8 m. Determine the magnitude of the electrical force of repulsion between them.
 878.9 N
- 13. Two charged boxes are 4 meters apart from each other. The blue box has a charge of +0.000337 C and is attracting the red box with a force of 626 Newtons. Determine charge of the red box.
 Remember to indicate if it is positive or negative.
- 14. A piece of styrofoam has a charge of -0.004 C and is placed 3 m from a piece of salt with a charge of -0.003 C. How much electrostatic force is produced?

Electricity Worksheet (p.2)

All questions should be answered on your own paper.

- 15. What occurs when we "ground" an object?
- 16. What are two purposes of a lightning rod? Which is primary?
- 17. How can you charge an object negatively by using a positively charged object?
- 18. Why is it safe to be in a car when it is struck by lightning? No, it's not "grounding".
- 19. Sketch the electric field surrounding two electrons that are 2 cm apart.
- 20. Where is the magnitude of an electric field the strongest?
- 21. Describe how a charged particle would gain electrical potential energy.
- 22. Compare and contrast electrical potential energy and electric potential.
- 23. If you put in 10 joules of work to push 1 coulomb of charge against an electric field, what will be its voltage with respect to its starting position?
- 24. What is the voltage at the location of a 0.0001 C charge that has an electric potential energy of 0.5 J? 5000 V
- 25. How much electrical potential energy is given to each coulomb of charge that flows through a 1.5 volt battery? 1.5 J
- 26. What voltage is produced by a balloon with 35 J of electric potential energy and containing 0.0005 C of charge? 70,000 V
- 27. A balloon may be charged to several thousand volts. Does this mean it has several thousand joules of energy? Explain your answer.
- 28. How much charge is carried by a 120,000,000 volt lightning bolt? The electric potential energy of the built up charge before it discharged as lightning was 3,000,000,000 J.
- 29. What condition is necessary for the sustained flow of water in a pipe? What analogous condition is necessary for the sustained flow of charge in a wire?
- 30. What is an ampere?

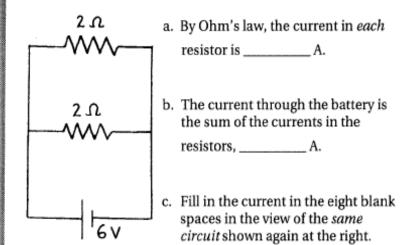

Electricity Worksheet (p.3)

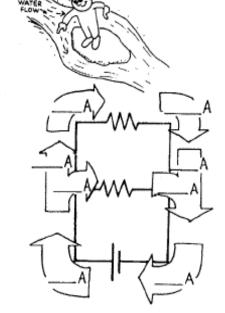
All questions should be answered on your own paper.

- 31. Why is a current-carrying wire normally not electrically charged?
- 32. Does charge flow through a circuit or into a circuit? Does voltage flow through a circuit, or is voltage established across a circuit?
- 33. Will water flow more easily through a wide pipe or a narrow pipe? Will current flow more easily through a thick wire or a thin wire?
- 34. Does heating a metal wire increase or decrease its electrical resistance?
- 35. If the voltage impressed across a circuit is held constant while the resistance increases, what change occurs in the current?
- 36. If the resistance of a circuit remains constant while the voltage across the circuit decreases, what change occurs in the current?
- 37. What is the error in saying that electrons in a common battery driven circuit travel at about the speed of light?
- 38. What is the error in saying the source of electrons in a circuit is the battery or generator?
- 39. What is an electric circuit?
- 40. How much current flows in a 1000 ohm resistor when 1.5 volts are impressed across it?
- 41. If the filament in an automobile headlamp is 3 ohms, how many amperes does it draw when connected to a 12 volt battery?
- 42. How much resistance allows an impressed voltage of 6 V to produce a current of 2 A
- 43. What is the voltage across a 100 ohm circuit that draws a current of 2 amperes?
- 44. What is the power when 120 V drives a 2 ampere current through a CD player?
- 45. What is the current in a typical 60 watt light bulb which is plugged into a 120 V socket?
- 46. If part of a circuit dissipates energy at a rate of 6 watts when it draws a current of 3 amperes, what voltage is impressed across it?

Electricity Worksheet (p.4)

All questions should be answered on your own paper.




Electricity Worksheet (p.5)

All questions should be answered on your own paper.

Parallel Circuits

53 . In the circuit shown below, there is a voltage drop of 6 V across *each* 2- Ω resistor.

THE SUM OF THE CURRENTS IN THE TWO BRANCH PATHS EQUALS THE CURRENT BEFORE IT DIVIDES,

54 Cross out the circuit below that is *not* equivalent to the circuit above.

Consider the parallel circuit at the right.

V.

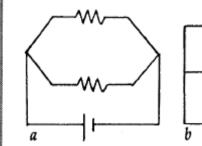
b. The current in each branch is:

b. The current through the battery

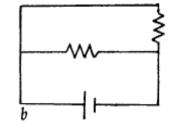
equals the sum of the currents which

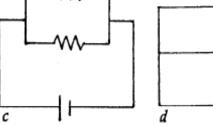
c. The equivalent resistance of the circuit

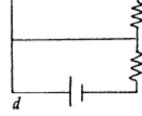
2-Ω resistor _____A

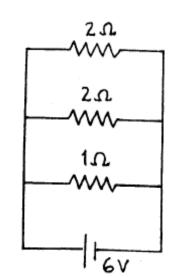

2-Ω resistor _____A

1-Ω resistor _____A

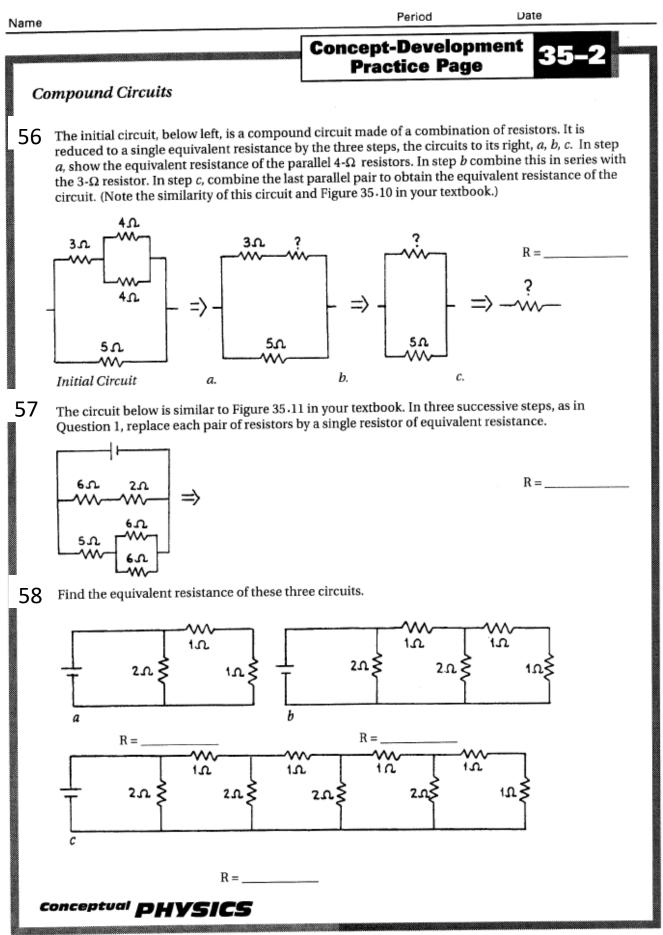

equals _____A.


equals _____Ω.


a. The voltage drop across each resistor is



55



THE EQUIVALENT RESISTANCE OF A PAIR OF RESISTORS IN PARALLEL IS THEIR PRODUCT DIVIDED BY THEIR SUM!

^{conceptual} PHYSICS

Electricity Worksheet (p.6)

All questions should be answered on your own paper.

©Addison-Wesley Publishing Company, Inc. All rights reserved.

Chapter 35 Electric Circuits

131